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Figure 1. Overview of our method. Left: our image-vector dual diffusion model architecture where both image and vector diffusion are
conditioned on input elements and exchanging information with attention maps. Right: a comparison showing the advantage of dual-
domain (image and vector) over traditional single-domain approaches.

Abstract

This paper proposes an image-vector dual diffusion
model for generative layout design. Distinct from prior
efforts that mostly ignores visual information of elements
and the whole canvas, our approach integrates the power
of a pre-trained large image diffusion model to guide
layout composition in a vector diffusion model by pro-
viding enhanced salient region understanding and high-
level inter-element relationship reasoning. Our proposed
model simultaneously operates in two domains: it gen-
erates the overall design appearance in the image do-
main while optimizing the size and position of each de-
sign element in the vector domain. The proposed method
achieves the state-of-the-art results on several datasets and
enables new layout design applications. Project webpage:
https://aminshabani.github.io/visual layout composer.

1. Introduction
Layout design is essential in creative tasks, determining the
spatial arrangement of texts, images, and other visual ele-
ments, which are composed into a visual design, such as
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book and magazine covers, posters showcasing new prod-
ucts, or invitation cards for holiday parties. Graphic de-
signers rely on their keen artistic sensibility in meticulously
optimizing the arrangements of the visual elements while
ensuring that the composited image conveys the intended
message with aesthetic appeals.

Machine learning techniques have been successful in
directly regressing the layout vector parameters, i.e., the
bounding box coordinates of elements. Both transformer-
based models [1] and more recent diffusion-based mod-
els [18] have achieved promising results that capture ba-
sic geometrical properties such as alignment and symme-
try. However, most of these models ignore the visual infor-
mation from the input elements, including image content,
text typeface, and color/shape of vector arts. This leads
to unsatisfactory designs as illustrated by the Vector Only
results in Figure 1. The lack of layout datasets with asso-
ciated images also contributes to the negligence of visual
information. The most commonly used RICO [8] and Pub-
LayNet [45] datasets only contain box representation of de-
sign elements. The Crello [40] dataset provides element-
level image rendering for over 23K design templates, whose
visual features are used in the FlexDM [18] model. How-
ever, the interplay of element appearance when rendered on



the same canvas has never been studied at any large scale.
The recent success of image generative models [6, 9, 30,

32, 41] has enabled the generation of layout design in the
image space. Trained on millions of high quality design
images from web, these large generative models produce
visually diverse and compelling layouts as raster images,
demonstrating sophisticated design principles such as the
placement of major subjects, style coherence, and percep-
tual contrast. See the Image Only results as examples in
Figure 1. These visual properties, vital to layout design,
are learned in a holistic way, not straightforward by previ-
ous vector domain approaches. Despite high visual quality,
the layout designs in image format forbid further editing
and customization. Moreover, current generative models
are controlled only by text prompts, and cannot use given
visual assets as required in many real-world applications.

Motivated by the complementary strengths of the vector
and image domains, we propose a combined approach that
generates layout designs in both image and vector domains
simultaneously. An image branch is a pre-trained text-to-
image stable diffusion model [30], which refines (i.e., de-
noises) a design as an image, given a variable number of de-
sign elements with different media types. A vector branch
refines per-element bounding box parameters conditioned
on attention maps from the UNet of the image branch.
Ground truth element masks are used to apply loss directly
to these attention maps, whose manipulation at generation
time will allow users to control the positioning of elements.
This dual diffusion model refines the visual design in the
vector and image domains simultaneously. The final vector
output assembles the input elements and renders the visual
design while allowing further editing by users. The overall
proposed method is illustrated on the left of Figure 1.

For training large diffusion models, we have collected a
large-scale design Poster dataset from public design web
pages by extracting both images and metadata. This ef-
fort yields 140K image-layout paired samples as our own
dataset, more than six times of the current largest visual
layout dataset Crello with 23K samples. We conduct ex-
periments on both datasets to validate the effectiveness of
our dual diffusion model. Our data collection tools and pro-
cessing pipeline can facilitate future efforts to curate even
larger dataset for exploring visual design.

Our key contributions are summarized below:
• A novel dual diffusion model that generates layout design

in both image and vector domains conditioned on input
design elements. The two diffusion processes interact by
exchanging element attention maps, where the final re-
sults attain both vector editability and visual quality.

• Creative design applications, enabling element-wise user
controls, such as canvas resizing and design variation.

• State-of-the-art layout generation results on the existing
datasets and our Poster dataset.

2. Related Works
2.1. Vector-only Layout Generation

Generative models for layout generation have seen signif-
icant developments. Yamaguchi [40] introduced a VAE-
based architecture for unconditional generation of vector
graphic documents. Following this, Li et al. [26] proposed
LayoutGAN, which uses a relational generator and a wire-
frame renderer for training with a pixel-based discriminator.
Kikuchi et al. [20] further refined this approach with Lay-
outGAN++, incorporating user-specified constraints into
layout generation. Chai et al. [4] proposed using DDPM for
layout generation. Inoue et al. proposed LayoutDM [17], a
discrete diffusion-based model for layout designs. Zhang et
al. [42] and Hui et al. [16] both contributed to this domain
with LayoutDiffusion and LDGM, respectively, each based
on discrete diffusion models. Cheng et al. [7] proposed a
unique approach using guidelines as input conditions for the
latent diffusion model.

2.2. Visual-guided Layout Generation

Zhou et al. [46] tackled image-composition-aware layout
generation with a multi-stage GAN-based method, an ap-
proach further improved by Xu et al. [39] through the use
of a pixel-level discriminator. Zheng et al. [44] proposed a
GAN based approach using image-based representation for
layouts, which requires subsequent post-processing. Lin et
al. [28] introduced a multi-step approach dedicated to the
cleansing and retargeting of advertising posters. Hsu et
al. [15] introduced DS-GAN, a CNN-LSTM-based condi-
tional GAN method for poster layout generation. Inoue et
al. [18] proposed Flex-DM, utilizing a transformer to pre-
dict masked attributes in design. Shimoda et al. [34] and
Tang et al. [36] expanded the field by proposing new mod-
els for typography generation and layout generation, respec-
tively. Our work differs by focusing on enhancing visual in-
formation and consistency through a large image diffusion
model.

2.3. Image-based Diffusion Models

Image diffusion model [35] was proposed initially for
unconditional image generation. With the rapid devel-
opment of the large-language model (LLM) [3], it has
shown groundbreaking ability for text-to-image generation
tasks [14]. To enhance the computational efficiency, rather
than performing diffusion steps at the pixel level, latent
diffusion model (LDM) [30] conducted operations on la-
tent space, further boosting the generation ability of dif-
fusion models. It has been widely used in various ap-
plications, including image-to-image translation [31], style
transfer [23, 37], and condition-guided editing (e.g., sketch,
layout, depth map, etc.) [27, 43]. To enable multi-object
composition closer to our work, Xiao et al. [38] introduced



Localization Loss for free text-to-image generation with
multiple subjects, while Sarukkai et al. [33] developed Col-
lage Diffusion for creating realistic photos, focusing on har-
monization and fidelity. Balaji et al. [2] training an en-
semble of diffusion models specialized for different parts
of the diffusion model to improve the overall text alignment
of the model. Goel et al. [10] proposed Pair Diffusion to
edit object properties in images via structure and appear-
ance decomposition. Our model stands out by not needing
predefined element positions and scales, handling multiple
subjects, maintaining visual consistency, and providing en-
hanced editing flexibility.

3. Method
Our Visual Layout Composer (VLC) model consists of two
diffusion models that operate in parallel: one in the vec-
tor domain and the other in the image domain. The two
models exchange features at intermediate stages, enabling
them to produce outputs that are not only consistent but also
leverage the information from both domains. In the follow-
ing subsections, we first describe our problem formulation,
followed by the specifics of the diffusion models for each
domain, and how they collaborate to enhance output con-
sistency. Figure 2 shows the model overview.

3.1. Preliminary

Our input is a set of N design elements E =
{e1, e2, . . . , eN}. Each element ei is associated with a class
category ci indicating its asset type (such as text, image,
shape), an index oi indicating its layer order relative to other
elements, and an RGBA image Ii of its rendering. On a des-
ignated 2D canvas with aspect ratio rc, the task is to predict
an upright bounding box for each element ei, defined by the
2D coordinates of the top left and bottom right corners as a
4D vector xi. The goal is to generate a layout design with
high visual quality by composing each element ei on the
canvas with the position and size specified by xi.

3.2. Condition Embedding

After resizing each element image Ii of aspect ratio ri to
224× 224, we employ CLIP [29] followed by a linear layer
to derive its feature representation in the model’s hidden di-
mension d. In parallel, we encode the vector attributes of
each element by a vector attributes encoder. The vector
condition is constructed by concatenating the element im-
age ratio ri, canvas image ratio rc, one-hot encoded version
of the element’s type ci and the order of the element oi. A
linear layer maps the concatenated feature to the model’s
dimension d. The image feature and the vector feature are
concatenated and processed by a linear layer to form the
final condition feature of size N×d. For each image or
vector diffusion model, this condition feature is fed into a
transformer-based condition processing module (Figure 2),

yielding outputs of sizes N × 768 for image condition fea-
ture and N × d for vector condition feature.

3.3. Network Architecture

The diffusion model in the image domain utilizes a pre-
trained Stable Diffusion V1.5 model [30], retaining all lay-
ers frozen except for the attention modules. During a given
time step t, a noisy latent image zt, representing the target
layout rendering, will be passed to the U-Net. Contrary to
the original Stable Diffusion, which uses text prompts, we
pass the processed image condition feature as the input to
the cross-attention layers.

The diffusion model in the vector domain produces the
bounding box positions as a 4D vector xi. We embed the
noisy input coordinates xt to a N × d feature vector, con-
catenate with the vector condition feature, and map to the
model’s dimension d by a linear layer. These features are
fed into a transformer-based diffusion denoiser to estimate
the corresponding noise for each element xi.

Information exchange between the image and vector do-
mains is challenging, where we found that direct feature
space sharing as in ControlNet [43] is not effective. We
use the processed attention scores from U-Net as a shared
medium. The advantages of this method are: (i) it aligns
the number of attention scores with the number of input el-
ements, enabling a straightforward concatenation of each
image mask to its respective vector model feature token;
(ii) it provides a general indication of each element’s loca-
tion in the image domain, simplifying the interpretation for
the vector domain; and (iii) it allows the vector domain to
adjust these scores to enhance the U-Net’s focusing capabil-
ity, with a mechanism similar to Attention Modulation [21].

Concretely, we extract a set of attention scores from the
cross-attention module of the U-Net’s middle block. Given
the scores with 8 heads and size 8×8 for each design ele-
ment, we flatten the tensors to form a set of vectors with the
total size of N×512. This feature is embedded to N×1024
and concatenated with each input element in the vector do-
main prior to the transformer-based diffusion denoiser. The
transformer model produces an output of N×2048, which
is passed through linear projection layers to yield denoised
estimation of xt−1 and the attention modulation residual of
size N×512. We add the residual values to the original at-
tentions to form the refined attention scores. These scores
are sent back to the U-Net, promoting interactive and itera-
tive information exchange between the two domains.

During the diffusion process, repetitive elements can
lead to omissions or misalignments in the image. To miti-
gate this, we adopt the cross-attention localization loss [38].
This loss refines the attention scores of each region, ensur-
ing a more accurate correspondence to its respective ele-
ment. We apply this loss within the U-Net’s attention mod-
ules to further enhance the quality of the attention scores.
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Figure 2. Illustration of the proposed model. Given a set of element images and additional attributes, the model simultaneously employs
dual diffusion processes to generate a cohesive image layout and the corresponding bounding boxes for each element.

(a) without canvas masking (b) with canvas masking

Figure 3. Generated image/vector layout without or with canvas
masking. By masking intermediate outputs of the diffusion model
in image domain, we optimize the image output for the canvas size
and increase the consistency between the vector-image domains.

The training losses for the image and vector diffusion mod-
els are the same as the original DDPM [13].

3.4. Controllable Element Composition

Our experiments showed that fine-tuning the image domain
led the model to disregard the specified canvas aspect ratio,
favoring the generation of square-shaped layout designs.
This tendency not only reduces the quality and diversity of
the generated designs but also increases the discrepancy be-
tween the image and vector domains, particularly given that
the vector domain generally follows the canvas’s aspect ra-
tio. To address this problem, we introduce a straightforward
yet efficient strategy: masking the noisy latent feature map
of zt at each time step to have zero value outside the canvas
region, which ensures image contents related to input con-
dition only appear inside the canvas. The homogeneous re-
gion outside the canvas is cropped from the final generated
image, maintaining the original image aspect ratio. Figure 3
shows the effect of this process on both domains.

4. Experiments

Implementation details: In our implementation, we use
the pretrained weights of StableDiffusion v1-5 [30] for
image domain, and OpenAI’s clip-vit-large-patch14 vision
model for embedding the image of each element to latent
space. For training, we run each model for 250,000 it-
erations, employing a starting learning rate of 5e-5 which
decreases by a factor of 0.5 every 100k steps. The vector
model has a hidden dimension of 2048, accommodating a
wide range of features including attention scores, vector in-
puts, and image information. Additionally, we incorporate
classifier-free guidance into our process, randomly drop-
ping the image inputs of the elements in 20% of the times.
Training is conducted on 8 NVIDIA A100 GPUs, with a to-
tal batch size of 128. We pad each layout to square shape
and normalize the coordinates to [−1, 1]. For both domains,
we employ the DDPM scheduler with 1000 steps for train-
ing and 50 steps for inference to ensure high-quality layout
generation.

Datasets: Our experiments use two groups of datasets.
• Poster and Crello [40] datasets: demonstrating our

method’s ability to capture intricate visual information
and the interplay between design elements. These
datasets, characterized by their rich graphic content, are
instrumental in showcasing the method’s effectiveness in
a visually complex environment. We gathered Poster
dataset, which consists of 137,781 layout designs. From
this, we reserved 1,000 layouts for validation and 3,000
for testing. Each layout is represented as an RGBA image
and is classified into one of five categories: Frame, Can-
vas, Shape, Mix, and Text. We have limited the number of
elements in any given layout to a maximum of 20 to main-
tain structural simplicity. Given the intricate nature of



these layouts, we have also provided the sequential order
of the elements within each design. The Crello datasets
includes 18,768 training, 2,316 validation, and 2,331 test
layouts including categories such as vector shape, image,
or text placeholder.

• RICO [8] and PubLayNet [45] datasets: having lim-
ited visual information, which challenges our method. To
compensate for this, we assign distinct colors to each cat-
egory and depict layouts with these colors, simplifying
the visuals to fixed-color blocks representing each ele-
ment. This approach tests our method’s ability in gen-
erating layouts based primarily on structure rather than
rich visual details. The Rico dataset consists of user in-
terface (UI) designs sourced from various Android appli-
cations, spanning up to 25 categories of UI elements in-
cluding text bars, icons, and buttons. PubLayNet includes
360,000 document layout instances from academic pa-
pers, categorized into five primary layout elements: text,
titles, lists, tables, and figures. We use the processed
datasets by [17], obtained by keeping only those layouts
containing a maximum of 25 elements each. This results
training/validation/test sets of sizes 35,851/2,109/4,218
respectively for Rico and 315,757/16,619/11,142 for Pub-
LayNet.

4.1. Comparisons

For the baselines, we compare our method with recent state-
of-the-art methods in Layout Design Generation [5, 11, 12,
17, 19, 20, 22, 24, 25]. We compare our method to the
LayoutDM [17] as the state-of-the-art for layout generation.
This model only uses element categories, adhering to their
original design in discrete diffusion space. Our vector do-
main model operates in a continuous diffusion space and
incorporates each element’s image embedding. Finally, our
dual-domain model combines element image embeddings
with the capabilities of the image diffusion model to get the
highest quality.

4.1.1 Quantitative Evaluation

Metrics: We follow the previous work [17] and use met-
rics including Maximum IoU [20] and FID over extracted
features of the layouts [20, 24] for RICO and PubLayNet
datasets. The previous methods and measurements are ef-
fective when there are no visual data or input images for lay-
out elements. However, assessing layout designs in Poster
and Crello datasets is more complex. Even layouts with
well-aligned bounding boxes might look poor due to the
textures and visual details of each element. Elements can
also overlap for shadow or visual effects. Inoue et al. [18]
approached this as a reconstruction task, using metrics like
cosine similarity between the actual and predicted values.
This approach works for simple designs with few elements

Dataset Models
Bounding

Box
Composed

Image
Generated

Image

Crello
LayoutDM [17] 10.20 34.43 —–
VLC (Vector only) 0.21 5.74 —–
VLC (Dual-domain) 0.21 5.83 11.42

Poster
LayoutDM [17] 1.81 20.00 —–
VLC (Vector only) 0.19 5.82 —–
VLC (Dual-domain) 0.09 3.75 6.00

Table 1. FID scores of bounding boxes, composed RGB layouts
obtained from the bounding boxes, and the directly generated lay-
outs from the image domain. Our vector-only method outperforms
LayoutDM by effectively using image information, with our multi-
domain approach yielding the best results.

Models RICO PubLayNet

FID (↓) mIoU (↑) FID (↓) mIoU (↑)

LayoutVAE [19] 33.3 0.249 26.0 0.316
NDN-none [24] 28.4 0.158 61.1 0.162
LayoutGAN++ [20] 6.84 0.267 24.0 0.263
LayoutTrans [12] 5.57 0.223 14.1 0.272
MaskGIT [5] 26.1 0.262 17.2 0.319
BLT [22] 17.4 0.202 72.1 0.215
BART [25] 3.97 0.253 9.36 0.320
VQDiffusion [11] 4.34 0.252 10.3 0.319
LayoutDM [17] 3.55 0.277 7.95 0.310

VLC (Vector only) 2.38 0.418 5.49 0.348
VLC (Dual-domain) 5.60 0.376 5.74 0.331

Validation Set 1.85 0.691 6.25 0.438

Table 2. Quantitative comparison of our method with the base-
lines using RICO and PubLayNet datasets. Our method achieves
superior results compared with the baselines even with no visual
information in input conditions.

but limits diversity and learning on more complex datasets.
Instead, we propose using FID values over three outputs:
bounding boxes, feature embeddings from RGB images
created by composing elements within generated bounding
boxes, and the directly produced RGB images. Although
this is our best option, we realize that FID can be biased
to image quality and content similarity which should be re-
moved from the consideration for layout evaluation. Find-
ing better visual metric for layout can be a future direction.

Results: We evaluate our VLC method using visual in-
formation as shown in Table 1. Our dual-domain method
stands out for its ability to create visually appealing images
by using a large image model. This method is a significant
improvement over the LayoutDM [17]. LayoutDM uses
only element categories as input, which, while effective in
creating quality vectors, often fails to align with the actual
visual content of each element. This mismatch results in a



VLC (vector only) VLC (dual domain) Original Design

Figure 4. Qualitative comparison of our method with baselines on
Crello dataset.

drop in the overall quality of the final image. Our vector
domain approach is the most similar one to the transformer-
based reconstruction used in FlexDM [18]. It includes
both image information and other input conditions, and pro-
duces higher-quality images compared to LayoutDM, but
has some drawbacks such as occasionally covering faces
or not managing color contrast well when elements over-
lap. Our vector only model and dual-domain model perform
similarly on the Crello dataset. The reason can be attributed
to the larger number of elements in the dataset, which leads
to the content mismatch between image and vector domain
such that vector model cannot follow the guidance from im-
age correctly.

In Table 2, we compare our method with existing base-
lines on the RICO and PubLayNet datasets. The baseline
results are reported by Inoue et al. [17]. Remarkably, even
when the input elements are limited to only categorical data
without any visual information, our method demonstrated
its capability to produce high-quality layouts in both vector-
only and dual-domain settings. In the vector-only domain,
we observed a trend where training appeared less stable.
However, despite this instability, the results often surpassed
those generated by discrete diffusion models [11, 17]. In ad-
dition, the vector domain model tends to align with the per-
formance of our dual-domain model. This alignment is par-
ticularly notable as our dual-domain method achieves better
results than most of the baselines, underscoring its effec-
tiveness even in the absence of visual input. It is important
to note that while our method is slower than the baselines
duo to the amount of computation, this trade-off is compen-
sated by its high-quality output and robustness in processing
visual information with its diffusion formulation. Overall,
these findings suggest that our method not only achieves
state-of-the-art performance but also offers promising po-

VLC (vector only) VLC (dual domain) Original Design

Figure 5. Qualitative comparison of our method with baselines on
Poster dataset.

tential for generating high-quality layouts under varied and
challenging conditions.

4.1.2 Qualitative Evaluation

The effectiveness of our dual-domain method is further il-
lustrated in Figure 4&5 with visual results from the Crello
and Poster datasets. These examples highlight our approach
not only improves the layout quality but also ensures that
the final compositions are more visually coherent and ap-
pealing, especially when compared to other methods.

4.2. Model Analysis

4.2.1 The Effectiveness on Dual-domain Modeling

In addressing the complexities of dual-domain modeling, a
crucial challenge lies in maintaining consistency between
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Figure 7. Attention scores are assigned to various elements in the
image domain.

the image and vector domains. This is vividly illustrated in
Figure 3, which demonstrates that when these two domains
adhere to a consistent denoising path, the result quality
is significantly enhanced. Conversely, deviation from this
path leads to a noticeable drop in quality. Complementing
this, Figure 6 highlights the efficacy of our method, show-
casing that both the image and vector domains can generate
results that are not only consistent with each other but also
retain the diversity of the generated layouts.

4.2.2 The Effect of Attention Score Maps

The attention score maps are the key for the visual com-
positing capability of our model. We visualize the clear
spatial correlation between attention scores and correspond-
ing elements in the image domain in Figure 7. Our vector

Figure 8. Through attention masking, we can decompose all the
elements in the latent image space, and include them one by one
to create a layered image representation. The bottom right image
shows the original design.

domain model leverages these spatial information to predict
vector layouts by adaptively tracking each element and re-
solving the ambiguity between similar objects.

By manipulating the attention scores, we can also control
the element generation in the image domain. For example,
we can remove one element from canvas while keeping the
rest layout unchanged by masking out its attention map. If
we do this sequentially to each element, we can decompose
image output into a layered representation organized by ele-
ments, as shown in Figure 8. This results in a virtual vector
layout format, which may be used for similar purpose as our
vector domain model.

4.3. Applications

With its two domain outputs and high controllability
through attention maps, our model can be used for a range
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Figure 9. Layout controlled visual style variation. Given input
layout with bounding boxes, our image model can generate visual
results with the same layout and different styles.

Figure 10. Canvas resize with different aspect ratios. Our model
can adapt layout under various aspect ratios.

Figure 11. Controlled layout generation. Our model allows users
to add conditions on design elements to customize the result. In
this example, the user specifies the location of the balloons.

of design applications.
In Figure 9, we produce various visual designs with the

same spatial layout conforming to given element boxes by
setting the attention scores for each element accordingly.
This unlocks the power of the pretrained large image model
for visual style variation.

In Figure 10, we generate layouts of different canvas
sizes by changing the input condition and masking the in-
termediate latent states during the denoising process.

In Figure 11, when a user specifies the position of a cer-

Original Design Input Style New Design

Figure 12. Layout style transfer. Our model can transfer the style
from the reference design to the input design.

tain element (the balloons of digits “20”) to a desired po-
sition, we fix the attention map for this element during in-
ference, and only optimize the layout for the remaining ele-
ments.

In Figure 12, we transfer the layout from one design im-
age to a new set of elements by propagating the attention
maps from an existing design to a new one. The image
model takes a given reference image as the initial noisy la-
tent state, accompanied by a new set of elements. During
inference, the image model aligns the visual content to in-
put elements while preserving the initial reference layout.
The vector model utilizes the aligned attentions to create a
new design incorporating both the input elements and refer-
ence layout.

5. Conclusion
Our paper introduces a new approach to layout design, com-
bining vector and image domains through a dual diffusion
model. Compared to previous methods solely based on the
vector domain, this model has shown notable improvement
on layout visual quality while maintaining the flexibility of
vector editing on several datasets. Our model also shows
flexible controllability via element attention manipulation,
enabling a set of design applications across image and vec-
tor domains.

While we have made strides in integrating visual ele-
ments into layout design, our model is an initial step in ad-
dressing this complex task. Our findings offer a new per-
spective to the layout generation problem, and point out a
potential direction for future exploration.



References
[1] Diego Martin Arroyo, Janis Postels, and Federico Tombari.

Variational transformer networks for layout generation. In
Proceedings of the IEEE/CVF Conference on Computer Vi-
sion and Pattern Recognition, pages 13642–13652, 2021. 1

[2] Yogesh Balaji, Seungjun Nah, Xun Huang, Arash Vahdat,
Jiaming Song, Karsten Kreis, Miika Aittala, Timo Aila,
Samuli Laine, Bryan Catanzaro, et al. ediffi: Text-to-image
diffusion models with an ensemble of expert denoisers. arXiv
preprint arXiv:2211.01324, 2022. 3

[3] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Sub-
biah, Jared D Kaplan, Prafulla Dhariwal, Arvind Neelakan-
tan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Lan-
guage models are few-shot learners. Advances in neural in-
formation processing systems, 33:1877–1901, 2020. 2

[4] Shang Chai, Liansheng Zhuang, and Fengying Yan. Lay-
outdm: Transformer-based diffusion model for layout gener-
ation. In Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition, pages 18349–18358,
2023. 2

[5] Huiwen Chang, Han Zhang, Lu Jiang, Ce Liu, and William T
Freeman. Maskgit: Masked generative image transformer.
In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 11315–11325, 2022.
5

[6] Huiwen Chang, Han Zhang, Jarred Barber, AJ Maschinot,
Jose Lezama, Lu Jiang, Ming-Hsuan Yang, Kevin Mur-
phy, William T Freeman, Michael Rubinstein, et al. Muse:
Text-to-image generation via masked generative transform-
ers. arXiv preprint arXiv:2301.00704, 2023. 2

[7] Chin-Yi Cheng, Forrest Huang, Gang Li, and Yang Li. Play:
Parametrically conditioned layout generation using latent
diffusion. arXiv preprint arXiv:2301.11529, 2023. 2

[8] Biplab Deka, Zifeng Huang, Chad Franzen, Joshua Hib-
schman, Daniel Afergan, Yang Li, Jeffrey Nichols, and Ran-
jitha Kumar. Rico: A mobile app dataset for building data-
driven design applications. In Proceedings of the 30th annual
ACM symposium on user interface software and technology,
pages 845–854, 2017. 1, 5

[9] Prafulla Dhariwal and Alexander Nichol. Diffusion models
beat gans on image synthesis. Advances in neural informa-
tion processing systems, 34:8780–8794, 2021. 2

[10] Vidit Goel, Elia Peruzzo, Yifan Jiang, Dejia Xu, Nicu
Sebe, Trevor Darrell, Zhangyang Wang, and Humphrey Shi.
Pair-diffusion: Object-level image editing with structure-
and-appearance paired diffusion models. arXiv preprint
arXiv:2303.17546, 2023. 3

[11] Shuyang Gu, Dong Chen, Jianmin Bao, Fang Wen, Bo
Zhang, Dongdong Chen, Lu Yuan, and Baining Guo. Vec-
tor quantized diffusion model for text-to-image synthesis. In
Proceedings of the IEEE/CVF Conference on Computer Vi-
sion and Pattern Recognition, pages 10696–10706, 2022. 5,
6

[12] Kamal Gupta, Justin Lazarow, Alessandro Achille, Larry S
Davis, Vijay Mahadevan, and Abhinav Shrivastava. Layout-
transformer: Layout generation and completion with self-

attention. In Proceedings of the IEEE/CVF International
Conference on Computer Vision, pages 1004–1014, 2021. 5

[13] Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising dif-
fusion probabilistic models. Advances in neural information
processing systems, 33:6840–6851, 2020. 4

[14] Jonathan Ho, Chitwan Saharia, William Chan, David J Fleet,
Mohammad Norouzi, and Tim Salimans. Cascaded diffusion
models for high fidelity image generation. The Journal of
Machine Learning Research, 23(1):2249–2281, 2022. 2

[15] Hsiao Yuan Hsu, Xiangteng He, Yuxin Peng, Hao Kong, and
Qing Zhang. Posterlayout: A new benchmark and approach
for content-aware visual-textual presentation layout. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 6018–6026, 2023. 2

[16] Mude Hui, Zhizheng Zhang, Xiaoyi Zhang, Wenxuan Xie,
Yuwang Wang, and Yan Lu. Unifying layout generation
with a decoupled diffusion model. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 1942–1951, 2023. 2

[17] Naoto Inoue, Kotaro Kikuchi, Edgar Simo-Serra, Mayu
Otani, and Kota Yamaguchi. LayoutDM: Discrete diffusion
model for controllable layout generation. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 10167–10176, 2023. 2, 5, 6

[18] Naoto Inoue, Kotaro Kikuchi, Edgar Simo-Serra, Mayu
Otani, and Kota Yamaguchi. Towards flexible multi-modal
document models. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, pages
14287–14296, 2023. 1, 2, 5, 6

[19] Akash Abdu Jyothi, Thibaut Durand, Jiawei He, Leonid Si-
gal, and Greg Mori. Layoutvae: Stochastic scene layout gen-
eration from a label set. In Proceedings of the IEEE/CVF
International Conference on Computer Vision, pages 9895–
9904, 2019. 5

[20] Kotaro Kikuchi, Edgar Simo-Serra, Mayu Otani, and Kota
Yamaguchi. Constrained graphic layout generation via latent
optimization. In Proceedings of the 29th ACM International
Conference on Multimedia, pages 88–96, 2021. 2, 5

[21] Yunji Kim, Jiyoung Lee, Jin-Hwa Kim, Jung-Woo Ha, and
Jun-Yan Zhu. Dense text-to-image generation with attention
modulation. In ICCV, 2023. 3

[22] Xiang Kong, Lu Jiang, Huiwen Chang, Han Zhang, Yuan
Hao, Haifeng Gong, and Irfan Essa. Blt: bidirectional layout
transformer for controllable layout generation. In European
Conference on Computer Vision, pages 474–490. Springer,
2022. 5

[23] Gihyun Kwon and Jong Chul Ye. Diffusion-based image
translation using disentangled style and content representa-
tion. arXiv preprint arXiv:2209.15264, 2022. 2

[24] Hsin-Ying Lee, Lu Jiang, Irfan Essa, Phuong B Le, Haifeng
Gong, Ming-Hsuan Yang, and Weilong Yang. Neural de-
sign network: Graphic layout generation with constraints. In
Computer Vision–ECCV 2020: 16th European Conference,
Glasgow, UK, August 23–28, 2020, Proceedings, Part III 16,
pages 491–506. Springer, 2020. 5

[25] Mike Lewis, Yinhan Liu, Naman Goyal, Marjan Ghazvinine-
jad, Abdelrahman Mohamed, Omer Levy, Ves Stoyanov, and



Luke Zettlemoyer. Bart: Denoising sequence-to-sequence
pre-training for natural language generation, translation, and
comprehension. arXiv preprint arXiv:1910.13461, 2019. 5

[26] Jianan Li, Jimei Yang, Aaron Hertzmann, Jianming Zhang,
and Tingfa Xu. Layoutgan: Synthesizing graphic layouts
with vector-wireframe adversarial networks. IEEE Transac-
tions on Pattern Analysis and Machine Intelligence, 43(7):
2388–2399, 2020. 2

[27] Yuheng Li, Haotian Liu, Qingyang Wu, Fangzhou Mu, Jian-
wei Yang, Jianfeng Gao, Chunyuan Li, and Yong Jae Lee.
Gligen: Open-set grounded text-to-image generation. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 22511–22521, 2023. 2

[28] Jinpeng Lin, Min Zhou, Ye Ma, Yifan Gao, Chenxi Fei,
Yangjian Chen, Zhang Yu, and Tiezheng Ge. Autoposter:
A highly automatic and content-aware design system for ad-
vertising poster generation. In Proceedings of the 31st ACM
International Conference on Multimedia, pages 1250–1260,
2023. 2

[29] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya
Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sastry,
Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning
transferable visual models from natural language supervi-
sion. In International conference on machine learning, pages
8748–8763. PMLR, 2021. 3

[30] Robin Rombach, Andreas Blattmann, Dominik Lorenz,
Patrick Esser, and Björn Ommer. High-resolution image
synthesis with latent diffusion models. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), pages 10684–10695, 2022. 2, 3, 4

[31] Chitwan Saharia, William Chan, Huiwen Chang, Chris Lee,
Jonathan Ho, Tim Salimans, David Fleet, and Mohammad
Norouzi. Palette: Image-to-image diffusion models. In
ACM SIGGRAPH 2022 Conference Proceedings, pages 1–
10, 2022. 2

[32] Chitwan Saharia, William Chan, Saurabh Saxena, Lala
Li, Jay Whang, Emily L Denton, Kamyar Ghasemipour,
Raphael Gontijo Lopes, Burcu Karagol Ayan, Tim Salimans,
et al. Photorealistic text-to-image diffusion models with deep
language understanding. Advances in Neural Information
Processing Systems, 35:36479–36494, 2022. 2

[33] Vishnu Sarukkai, Linden Li, Arden Ma, Christopher Ré,
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